Role of Artificial Intelligence in Respiratory Care

Book Title: AI Horizons – Exploring Multidisciplinary Frontiers (Volume 4)

Editors: Dr. Shweta A. Bansal and Dr. Charu Chhabra (PT)

ISBN: 978-81-984464-6-6

Chapter: 11

DOI: https://doi.org/10.59646/aihc11/305

Authors: Fowquiya, Samreen Jamshed, Lakshita Garg, Iram Fatima, Habiba Sundus, Harsirjan Kaur

Abstract

Artificial intelligence refers to the capacity of computers to execute functions that typically demand human cognition, such as acquiring knowledge, logical thinking, and resolving challenges. Artificial intelligence is advancing across various domains, with health care being one of the most significant. Artificial intelligence has revolutionised respiratory care through early recognition of the diseases, patient tailored medical interventions as well as patient tracking using machine learning and deep learning technologies, not only this but artificial intelligence can also be used in early diagnosis and a better prognosis of respiratory conditions. Algorithms that are developed using machine learning can analyse enormous number of hospital information as well as healthcare information to identify patterns that normal diagnosis procedures frequently overlook. Various respiratory diseases including Idiopathic pulmonary fibrosis, pneumoconiosis, lung cancer, chronic obstructive pulmonary disease as well as asthma have all benefited from the use of artificial intelligence as it not only leads to early detection, but nowadays, various rehabilitative programmes are also available that incorporate the use of artificial intelligence to provide better healthcare facilities for individuals suffering from these condition.

References

  1. Hamet, P., & Tremblay, J. (2017). Artificial intelligence in medicine. metabolism, 69, S36-S40.
  2. Cornet**, G. (2013). Chapter 4. Robot companions and ethics: A pragmatic approach of ethical design. Journal international de bioéthique, 24(4), 49-58.
  3. Larson, J. A., Johnson, M. H., & Bhayani, S. B. (2014). Application of surgical safety standards to robotic surgery: five principles of ethics for nonmaleficence. Journal of the American College of Surgeons, 218(2), 290-293.
  4. Boers, E., Barrett, M., Su, J. G., Benjafield, A. V., Sinha, S., Kaye, L., … & Malhotra, A. (2023). Global burden of chronic obstructive pulmonary disease through 2050. JAMA Network Open, 6(12), e2346598-e2346598.
  5. Haynes, J. M., Kaminsky, D. A., & Ruppel, G. L. (2023). The Role of Pulmonary Function Testing in the Diagnosis and Management of COPD. Respiratory Care, 68(7), 889-913.
  6. Aziz R, Jawed F, Khan SA, Sundus H,. Wearable IoT Devices in Rehabilitation: Enabling Personalized Precision Medicine. In IGI Global (ED.), Medical Robotics and AI-Assisted Diagnostics for a High Tech Healthcare Industry. c2024.p.281-308 . DOI: 10.4018/979-8-3693-2105-8.ch018
  7. Wang, X., Qiao, Y., Cui, Y., Ren, H., Zhao, Y., Linghu, L., … & Qiu, L. (2023). An explainable artificial intelligence framework for risk prediction of COPD in smokers. BMC Public Health, 23(1), 2164.
  8. Sharma, S., Pandey, S., & Shah, D. (2023). Enhancing Medical Diagnosis with AI: A Focus on Respiratory Disease Detection. Indian Journal of Community Medicine, 48(5), 709-714.
  9. Malik, H., & Anees, T. (2024). Multi-modal deep learning methods for classification of chest diseases using different medical imaging and cough sounds. Plos one, 19(3), e0296352.
  10. Tschirren, J., McLennan, G., Palágyi, K., Hoffman, E. A., & Sonka, M. (2005). Matching and anatomical labeling of human airway tree. IEEE transactions on medical imaging, 24(12), 1540-1547.
  11. Hamidian, S., Sahiner, B., Petrick, N., & Pezeshk, A. (2017, March). 3D convolutional neural network for automatic detection of lung nodules in chest CT. In Medical Imaging 2017: Computer-Aided Diagnosis (Vol. 10134, pp. 54-59). SPIE.
  12. You, C., Li, G., Zhang, Y., Zhang, X., Shan, H., Li, M., … & Wang, G. (2019). CT super-resolution GAN constrained by the identical, residual, and cycle learning ensemble (GAN-CIRCLE). IEEE transactions on medical imaging, 39(1), 188-203.
  13. Haskins, G., Kruger, U., & Yan, P. (2020). Deep learning in medical image registration: a survey. Machine Vision and Applications, 31(1), 8.
  14. Lei, Y., Fu, Y., Wang, T., Liu, Y., Patel, P., Curran, W. J., … & Yang, X. (2020). 4D-CT deformable image registration using multiscale unsupervised deep learning. Physics in Medicine & Biology, 65(8), 085003.
  15. Tandon, Y. K., Bartholmai, B. J., & Koo, C. W. (2020). Putting artificial intelligence (AI) on the spot: machine learning evaluation of pulmonary nodules. Journal of Thoracic Disease, 12(11), 6954.
  16. Siu, B. M. K., Kwak, G. H., Ling, L., & Hui, P. (2020). Predicting the need for intubation in the first 24 h after critical care admission using machine learning approaches. Scientific reports, 10(1), 20931.
  17. Krautenbacher, N., Flach, N., Böck, A., Laubhahn, K., Laimighofer, M., Theis, F. J., … & Schaub, B. (2019). A strategy for high‐dimensional multivariable analysis classifies childhood asthma phenotypes from genetic, immunological, and environmental factors. Allergy, 74(7), 1364-1373.
  18. Korevaar, D. A., Westerhof, G. A., Spijker, R., Sterk, P. J., … & Bossuyt, P. M. (2015). Diagnostic accuracy of minimally invasive markers for detection of airway eosinophilia in asthma: a systematic review and meta-analysis. The Lancet Respiratory Medicine, 3(4), 290-300.
  19. Braido, F., Santus, P., Di Marco, F., Melioli, G., Scichilone, N., & Solidoro, P. (2018). Chronic obstructive lung disease “expert system”: Validation of a predictive tool for assisting diagnosis. International journal of chronic obstructive pulmonary disease, 1747-1753.
  20. Soffer, S., Morgenthau, A. S., Shimon, O., Barash, Y., Konen, E., Glicksberg, B. S., & Klang, E. (2022). Artificial intelligence for interstitial lung disease analysis on chest computed tomography: a systematic review. Academic Radiology, 29, S226-S235.
  21. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18 (pp. 234-241). Springer International Publishing.
  22. Park, B., Park, H., & Kim, N. (2019). Lung segmentation on HRCT and volumetric CT for diffuse interstitial lung disease using deep convolutional neural networks. Journal of digital imaging, 32, 1019-1026.
  23. Devnath, L., Summons, P., Luo, S., Wang, D., Shaukat, K., Hameed, I. A., & Aljuaid, H. (2022). Computer-aided diagnosis of coal workers’ pneumoconiosis in chest x-ray radiographs using machine learning: A systematic literature review. International Journal of Environmental Research and Public Health, 19(11), 6439.
  24. Okumura, E., Kawashita, I., & Ishida, T. (2017). Computerized classification of pneumoconiosis on digital chest radiography artificial neural network with three stages. Journal of digital imaging, 30, 413-426.
  25. Gandhi, Z., Gurram, P., Amgai, B., Lekkala, S. P., Lokhandwala, A., Manne, S., … & Surani, S. (2023). Artificial intelligence and lung cancer: impact on improving patient outcomes. Cancers, 15(21), 5236.
  26. Nikolaou, V., Massaro, S., Fakhimi, M., Stergioulas, L., & Price, D. (2020). COPD phenotypes and machine learning cluster analysis: a systematic review and future research agenda. Respiratory medicine, 171, 106093.
  27. Estépar, J. (2020). Artificial intelligence in COPD: New venues to study a complex disease. Barcelona respiratory network reviews, 6(2), 144.
  28. Hakizimana, A., Devani, P., & Gaillard, E. A. (2024). Current technological advancement in asthma care. Expert Review of Respiratory Medicine, 18(7), 499-512.
  29. Haick, H., & Tang, N. (2021). Artificial intelligence in medical sensors for clinical decisions. ACS nano, 15(3), 3557-3567.
  30. Chidambaram, S., Maheswaran, Y., Patel, K., Sounderajah, V., Hashimoto, D. A., Seastedt, K. P., … & Darzi, A. (2022). Using artificial intelligence-enhanced sensing and wearable technology in sports medicine and performance optimisation. Sensors, 22(18), 6920.
  31. Inbar, O., Inbar, O., Reuveny, R., Segel, M. J., Greenspan, H., & Scheinowitz, M. (2021). A machine learning approach to the interpretation of cardiopulmonary exercise tests: Development and validation. Pulmonary Medicine, 2021(1), 5516248.
  32. Magadle, R., McConnell, A. K., Beckerman, M., & Weiner, P. (2007). Inspiratory muscle training in pulmonary rehabilitation program in COPD patients. Respiratory medicine, 101(7), 1500-1505.
  33. Ahmed, S., Martin, A. A. D., & Smith, B. K. (2019). Inspiratory muscle training in patients with prolonged mechanical ventilation: narrative review. Cardiopulmonary physical therapy journal, 30(1), 44-50.
  34. Liu, C. F., Hung, C. M., Ko, S. C., Cheng, K. C., Chao, C. M., Sung, M. I., & Chiu, C. C. (2022). An artificial intelligence system to predict the optimal timing for mechanical ventilation weaning for intensive care unit patients: a two-stage prediction approach. Frontiers in Medicine, 9, 935366.
  35. Wade, D. T. (2020). What is rehabilitation? An empirical investigation leading. Clinical rehabilitation, 34(5), 571-583.
  36. Alhuthail, E., Stockley, J., Coney, A., & Cooper, B. (2021). Measurement of breathing in patients with post-COVID-19 using structured light plethysmography (SLP). BMJ open respiratory research, 8(1), e001070.