Role of Artificial Intelligence in the Rehabilitation of Breast Cancer Survivors

Book Title: AI Horizons – Exploring Multidisciplinary Frontiers (Volume 4)

Editors: Dr. Shweta A. Bansal and Dr. Charu Chhabra (PT)

ISBN: 978-81-984464-6-6

Chapter: 3

DOI: https://doi.org/10.59646/aihc3/305

Authors: Syed Adeeba Ali, Sahar Zaidi, Huma Parveen

Abstract

Breast cancer is the second leading cause of death among women in the United States, with over 40,000 estimated fatalities in 2016. Early detection plays a crucial role in improving survival rates, as the overall prognosis is closely linked to the stage of the disease at diagnosis. Mammography screening has been shown to reduce breast cancer mortality by 16–40% in women aged 40–74. However, mammography alone may not detect all cancers, particularly in women with dense breast tissue. This limitation underscores the need for more effective screening methods for high-risk women.

To address these limitations, newer imaging techniques such as dynamic contrast-enhanced (DCE) breast magnetic resonance imaging (MRI), digital breast tomosynthesis (DBT), and automated whole breast ultrasound (AWBUS) have been developed. These advanced imaging modalities provide radiologists with a broader range of diagnostic tools and datasets. Artificial intelligence (AI) is poised to enhance this evolving landscape by streamlining diagnostic processes. AI can assist in recognizing and analyzing complex patterns in imaging data, translating tumoral characteristics to genetic profiles, and predicting outcomes to inform therapeutic and prognostic decisions.

References

  1. By Heang-Ping Chan, Ravi K. Samala, Lubomir M. Hadjiiski Year: 2020 Container: The British Journal of Radiology Volume: 93 Issue: 1108 Page: 20190580.
  2. By Deepa Sheth, Maryellen L. Giger Year: 2019 Container: Journal of Magnetic Resonance Imaging Volume: 51 Issue: 5 Page: 1310-1324 DOI: 10.1002/jmri.26878
  3. By Sizhu Liu Year: 2024 Container: Current Research in Medical Sciences Volume: 3 Issue: 1 Page: 85-92 DOI: 10.56397/crms.2024.03.11
  4. Aziz R, Jawed F, Sundus H, Chhabra C, Khan S. Advancing Healthcare: Harnessing Artificial Intelligence and Machine Learning In Physiotherapy Practice. In D. A. Ode & S. Kumar (Eds.), Recent Trends in Multidisciplinary Research; c2023 p . 252-265. RedShine Publications. ISBN:978-91-89764-51-4
  5. By Yingchun Zeng, Jun-E Zhang, Andy S. K. Cheng, Huaidong Cheng, Jeffrey Scott Wefel Year: 2019 Container: Integrative Cancer Therapies Volume: 18 Page: 153473541987110 DOI: 10.1177/1534735419871108
  6. By Andrea Chirico, Patrizia Maiorano, Paola Indovina, Carla Milanese, Giovan Giacomo Giordano, Fabio Alivernini, Giovanni Iodice, Luigi Gallo, Giuseppe De Pietro, Fabio Lucidi, Gerardo Botti, Michelino De Laurentiis, Antonio Giordano Year: 2020 Container: Journal of Cellular Physiology Volume: 235 Issue: 6 Page: 5353-5362 DOI: 10.1002/jcp.29422
  7. By Zijun Zhou, Jiaxin Li, He Wang, Ze Luan, Yuan Li, Xin Peng Year: 2021 Container: PLOS ONE Volume: 16 Issue: 12 Page: e0261220 DOI: 10.1371/journal.pone.0261220
  8. By Blagoj Ristevski, Ming Chen Year: 2018 Container: Journal of Integrative Bioinformatics Volume: 15 Issue: 3.
  9. By Ishith Seth, Gabriella Bulloch, Konrad Joseph, David J Hunter-Smith, Warren Matthew Rozen Year: 2023 Container: Journal of Clinical Medicine Publisher: Multidisciplinary Digital Publishing Institute Volume: 12 Issue: 15 Page: 5143-5143 DOI: 10.3390/jcm12155143